
S
am

an
 A

la
v
i-

2
0
2
2
 

Newton’s equations of motion are differential equations in Cartesian 

coordinates which are specified with knowledge of the force / potential 

energy 

 
 

 2

2

( )
( )x

d x t U x t
m F x t

xdt


  



1 

Total force on particle: depends on the position of the particle at time t: {x(t)}. 

Potential energy of 

the particle 

A Quick Review Classical Mechanical Systems and Phase Space 

 
   
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d t
m t U t

dt
  

r
F r r

In vector form: 
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( )
y

d y t
m F mg

dt
 

Initial conditions:  

At t = 0,         y = y(0) & vy = vy(0) 

Newton’s second law for a mass m moving in a constant gravitation force Fy = mg: 

21
2

( ) (0) (0)

( ) (0)

y

y y

y t y v t gt

v t v gt

  

 

Solution (by integrating twice): 

One-dimensional motion under constant gravitational force 

21
2

2 21 1
2 2
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(0) (0) (0) Constant
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mv mgy E

 
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2 

vy(0)  

y(0) 

Mechanical energy of the system at any time 
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Trajectory of one-dimensional motion under constant gravitational force  

Solution with two different initial conditions (what are they?) 

21
2
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 m
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 ξ = (x-x0) [displacement] 

U = k(x-x0)
2/2 F = -k(x-x0) 

- Force always opposes the 

displacement 

- Potential energy is 

symmetric with respect to 

compression and expansion 

Position-dependent forces: Harmonic oscillator 

 

 








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xxkxU
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Hooke’s law 

x0 



x 
x0 

5 

x0 

-v(0) 
t2 

 02

2

xxkF
dt

xd
m x 

One-dimensional motion under position-dependent forces: Harmonic oscillator 

Newton’s second law 

t1 

xmax;  

v = 0 

xmax 

xmax 

v = 0 
t3 

xmax 

change variable to 

displacement ξ 
0

2

2

 


m

k

dt

d

x(0) = x0 

v(0) 

Initial state 

t = 0 
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One-dimensional harmonic oscillator: Analytical solution 

( ) sin( )t A t   

• Second-order differential equation with constant coefficients 

• The general solution of this equation: (check by substitution) 

02

2

2

 


dt

d

6 
Frequency of motion 

Period of motion τ is determined by the condition  

2
2

m

k


 


 

1 

)()(   tt

Amplitude Phase 

k m • Define 

)cos()(
)(




  tAtv
dt

td

Displacement Velocity 
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ξ(t)  

v(t) 

vξ(t) / m·s-1 

 

     ξ(t) / m  

The specific solution depends on initial conditions 7 

ξ(0) = 0.0 m 

vξ(0) = 1.0 m/s 

General solution Apply initial conditions 
ω = 5.0 s-1 

Specific solution 

( ) 0.2sin(5 )

( ) cos(5 )

t t

v t t

 



( ) sin( )

( ) cos( )

t A t

v t A t

  

  

 

 

Energy of the harmonic oscillator is 

determined by the initial conditions 
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The Lagrangian approach to classical mechanics 

2 21 1
({ , }) ({ }) ({ })

2 2
i i i i i i i ii i

L K U m v U m r U      r v r r

The Euler – Lagrange equations of motion are equivalent to Newton’s second law 

We define the Lagrangian in terms of coordinates, r, and conjugate velocities,  𝐯 = 𝐫  

• In the Lagrangian approach, velocity is an independent variable 

• Force is eliminated in favor of potential energy 

22

2

1

2

1
kxxmL  Example:   0 kxxm

dt

d


0
i i

d L L

dt

  
  

  r r

1
2

( )({ })
0 ({ }) 0i i i

i

i i

m d md U
F

dt dt

   
     

  

r r rr
r

r r

What has been achieved? 
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The Lagrangian approach to classical mechanics 

0



















ii

LL

dt

d

qq

• Starting with Cartesian coordinates, we can convert L to any convenient 

coordinate system (spherical, cylindrical, etc.) 

})({
2

};{ ii ii
i

ii U
m

UKL qqqqq   

The Euler – Lagrange equations of motion are valid for all coordinate systems 

• The Euler – Lagrange equations are valid in all coordinate systems 

21
({ , }) ({ })

2
i i i i ii

L K U m r U   r r r
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i
i

L

q
p






)}{()}{(),(),( iiiii iiii UKLH qpqqpqqp  





















i

i

i

i

H

H

q
p

p
q





2

2

1
2

2



k
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p
H 

The Hamiltonian function in terms of coordinates and conjugate momenta 

The Hamiltonian equations of motion: 

Example: 

Lagrangian and Hamiltonian formulations are better suited for theoretical 

developments (see quantum mechanics, relativity, statistical mechanics, chaotic 

systems, …)  

• The Hamiltonian function represents the energy of the system 

• In the Hamiltonian approach, the positions and conjugate momenta are 

considered independent variables 

Define a momentum 

corresponding to a velocity  

 
x

xx
p

km










2

2

2

2

Try this with Cartesian 

coordinates 

The Hamiltonian approach to classical mechanics 
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L
p mx


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 

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
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p
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


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dtkdp

dt
m

p
d











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










  

The Hamiltonian is therefore, 

Hamilton’s equations of motion are, 

• These two equations may be solved separately to give the time variation of 

the coordinates and momentum, as given in Slide 6.  

 

• The structure of the Hamiltonian equations gives direct insight into the 

dynamical nature of the motion. Eliminating time between the two equations 

gives the “phase space trajectory”, 

The Hamiltonian approach and phase space: Harmonic oscillator 

The momentum for the harmonic oscillator is defined as, 
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Application of Hamilton’s approach: Phase space trajectory 

Eliminating time from the solution: 

• Initial conditions (the energy) determine which specific trajectory passes through a 

point in phase space.  

12 

• The phase space trajectory gives all dynamical information at different times.  

Hamilton’s equations of motion for a mass moving under constant gravitation force: 

• For one-dimensional motion of a 

single particle, the phase space has 

two dimensions: {y, py}. 

Phase space trajectory does not explicitly 

include time 

Trajectory in phase 

space 

py / kg∙m∙s-1 

dy 
dpy 

{y, py} 

• All of phase space is covered by trajectories since energy can vary continuously. 

• Each point in phase space defines the “state” of a system 

2

2 2 2 21 1
2 2

( ) (0) ( ) (0)

y y

y y

p dp m gdy

p t p m gy t m gy

 

  

y

y

yy

H
y p

p dy dt
m

H
dp mgdtp

y


    

 
     
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Phase space trajectory for the harmonic oscillator 

• The “state” in phase space is determined by the volume element around the point{ξ, pξ } 

• The collection of states on a phase space trajectory all have the same energy 

• All points in phase space belong to a unique trajectory 

dξ 
dpξ 

• Direction of motion on 

the trajectory with time 

• Time does not 

explicitly appear in the 

phase space 

representation 

The phase space trajectory 
2 20

2

2
( ) ( ) 1

mE
p t t

A
  
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Drum skin with stationary 

boundary conditions 

String confined between 

two stationary points 

Square membrane with 

stationary boundary conditions 

Quantum mechanics was developed by analogy with  

the classical wave equation (Schrödinger, 1923) 

2 2 2 2
2

2 2 2 2

2 2

( , , , ) ( , , , ) ( , , , ) ( , , , )

( , , , )

x y z t x y z t x y z t x y z t
c

t x y z

c x y z t

        
   

    

  

Classical wave equation 

( , , , ) ( , , ) ( )x y z t x y z T t Solution by separation of variables 

Curvature of the field 

The “field” which carries the wave  
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Quantum mechanics was developed by analogy with  

the classical wave equation (Schrödinger, 1923) 

• Stationary waves have nodes at the boundaries 

• The stable waves are “quantized” to satisfy the boundary conditions 

• Classically, the energy of the wave depends on the amplitude:  

 All energies are possible! 

2

2 2
( , , ) ( , , ) 0x y z x y z


 



 
   

 

When the wave has a single frequency, the wave equation simplifies to the “Helmholtz 

equation” 

2

, , , , , ,2

2
( , , ) ( , , ) ( , , ) 0

x y z x y z x y zn n n n n n n n n

m
x y z U x y z x y z      

 

Quantum mechanical time-independent Schrödinger equation is derived by 

applying de Broglie hypothesis to matter waves 
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Quantum mechanical treatment of simple systems:  

The time-independent Schrödinger equation 

zyxzyxzyx nnnnnnnnnzyxU
zyxm

,,,,,,2

2

2

2

2

22

),,(
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
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
























 

16 

Solving the time-independent Schrödinger equation gives allowed stationary quantum 

states (“wave functions”) in a system. For a one-particle, three dimensional system: 

States characterized by the wave function                          are obtained , ,n n nx y z


Only discrete energies                            are allowed , ,n n nx y z


• The time-independent Schrödinger equation is a “wave equation” which gives all 

possible stable (stationary waves) for a given system 

• It’s development uses the classical wave equation and the de Broglie idea that 

matter can be described by particles and waves, the same way as light 

Knowing the state (wave function) does not give exact knowledge of the position and 

momentum of the object in the quantum mechanical system. The best we can do is to predict 

these quantities within a minimum uncertainty. 
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Quantum mechanical particle in a box (ideal gas) system:  

Spacing of energy levels and degeneracy 

Potential energy for particle in a three-dimensional cubic box model: 

0 0 ; 0 ; 0
( , , )

for x L y L z L
U x y z

elsewhere

      
 

 

, , , , sin( / )sin( / )sin( / )n n n n n n x y zx y z x y z
A n x L n y L n z L   

   
2 2

2 2 2 2 2 2
, , 2 2/3

(1, )
8 8

n n n x y z x y zx y z

h h
V n n n n n n

mL mV
      

17 

Stationary wave function of particle in a three-dimensional cubic box: 

Allowed quantized energy levels of particle in a three-dimensional cubic box: 

L 

L 0 

2,2 2,2 sin(2 / )sin(2 / )A x L y L  

-For small confinement volumes, the gaps between energy levels for different combinations 

of ni are large (quantum dots) 

- For large volume (a typical gas), the energy levels are very closely spaced 

Stationary wave function of particle on a 2-dimensional surface: 

file://upload.wikimedia.org/wikipedia/commons/6/6d/Particle2D.svg
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Degeneracy of states of  molecules in a 3-dimensional cubic box 

 

 

 
6

8
2,1,1

1,2,1

1,1,2

3/2

2

mV

h


)/2sin()/sin()/sin(2,1,12,1,1 LzLyLxA  

)/sin()/2sin()/sin(1,2,11,2,1 LzLyLxA  

)/sin()/sin()/2sin(1,1,21,1,2 LzLyLxA    222

3/2

2

1,1,2 112
8

),1( 
mV

h
V

Two non-interacting particles in a three-dimensional cubic box have higher degeneracy: 

 
2

2 2 2 2 2 2
, 1 1 1 2 2 21 2 2/3

(2, )
8

x y z x y z
h

E V n n n n n n
mV

     j j

Degeneracy: Three microstates have the same energy 

18 

(2,1,1,1,1,1) (1,2,1,1,1,1) (1,1,2,1,1,1)  

(1,1,1,2,1,1) (1,1,1,1,2,1) (1,1,1,1,1,2) 

Consider the following three states: They all have an energy of: 

Six degenerate microstates: 
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Discrete states for the quantum mechanical harmonic oscillator 

The “state” of the system is represented by a single discrete quantum index i. The state is 

equivalent to a phase space trajectory with constant energy. 

( 1 2) ( 1 2)n n h n     

1

2 2

k

m




 
 

Further reading 

The energy of the quantum mechanical 

harmonic oscillator are quantized.  

Only certain energy values are allowed. 

The quantum index or quantum number 

nnnn kx
xm

H  












 2

2

22

2

1

2
ˆ 

Energy 

Time-independent Schrödinger equation 

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/hosc5.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/hosc5.html#c1
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• The wavefunction does not give the exact position and momentum of the object, 

but rather a probability of observing the object in certain locations 

Discrete states for the quantum mechanical harmonic oscillator 

1/4 23 /2
3

1/4 22 /2
2

1/4 2 /2
1

1/4 2 /2
0

1
2( ) 3 )

3

1
2 1

2

2

x

x

x

x

x x e

x e

xe

e










  




 




 
















        

        

 
  
 

 
  
 

Hermite polynomials 
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• The wave function ψn({r}) is a function of coordinates:  

     {r} = {x1, y1, z1, x2, y2, z2, …, xN, yN, zN}. 

• For an N-atom quantum system, the state of the system is represented by a discrete 

quantum index n. The index is a compound of all 3N dimensions in the system 

• The state n has a corresponding energy En    

        
2

2

1 2

N

j
jj

U E
m

 


 
   

  
 n n nr r r

• For the three-dimensional system of N atoms, the Schrödinger equation is: 

N-molecule states in quantum mechanics 

• We may not be able to explicitly determine the state ψn and the En  

• We can still say the system is characterized by discrete states  
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 2 2
1 1 2 2 1 2

1 1

2 2
E T U m v m v U     r r

The total energy for the two atom system is 

Molecular motion: Diatomic molecules, separating motions 

The energy is broken down to independent contributions from translation of the “molecule” 

as a whole, and “intramolecular” rotations and vibrations. 

   2 2
1 2 12

1 1

2 2
cmE T U m m v v U     r r

   2 2 2 2 2 2 2
1 2 12 12 12

1 1 1 1
sin

2 2 2 2
cm

trans vib rot

E m m R r U r r r

E E E

         

  

A procedure is carried out to show that for polyatomic molecules, the mechanical energy is 

separated into translational motion of the center of mass and rotational - vibrational 

intermolecular motions 

The total energy in the center of mass and relative position frame becomes 

Changing the relative position to polar coordinates allows separation of vibrational motion 

(involving changing r) and rotational motion (involving change of  and ϕ) 
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 

   
















211221212

2
2

2

21122

1
2

1

rrrr
r

rr
r

FF
dt

d
m

F
dt

d
m

1 1 2 2

1 2

1 2

cm
m m

m m





  

r r
R

r r r

2
1

1 2

1
2

1 2

cm

cm

m

m m

m

m m


  


  
 

r R r

r R r

We define the center of mass position, Rcm, and relative coordinates, r, as,  

In terms of these coordinates, the position vectors of the two particles can therefore be 

written as, 

Molecular motion: Diatomic molecules 

Consider to atoms 1 and 2 interacting with 

some force which is just a function of the 

distance between the two atoms, F(|r1-r2|) 

= F(r)  
r1 r2 

x 

y 

Rcm 

r 

The second time derivatives of r1 and r2 can 

be written in terms of time derivatives of Rcm 

and r 
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 

2

1 2 2

2 2
1 2

122 2
1 2

( ) 0cmd
m m

dt

m m d d
r

m m dt dt



 





  

R

r r
F

Substituting into the equations motion gives two new equations for the center of mass and 

relative motion: 
In the new coordinate system,  

- Motions of the center of mass and relative coordinates are 

not coupled 

- The center of mass moves as a free particle subject to no 

force 

- The relative motion is described by a particle of mass 12 

moving under a force F(r).    

Molecular motion: Diatomic molecules, separating motions 

Rather than Cartesian coordinates r  

{x, y, z}, the relative motion is described 

in the polar coordinate system  

sin cos

sin sin

cos

x r

y r

z r

 

 







 

sin cos cos cos cos sin

sin sin cos sin cos cos

cos sin

x r r r

y r r r

z r r

     

     

 

   


  


 

Showing time derivatives 

with the “dot” notation 

introduced by Newton: 

dx
x

dt

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• Solving the Schrödinger equation for rotation of a rigid linear 

molecule; 

• The rotation is represented by angular variables  (polar angle) 

and ϕ (azimuth); 

Discrete states for the quantum mechanical “rigid rotor” 

The rotational energy states have a 

degeneracy of 2J + 1. 

2

( 1) ( 1)
2

J J J J J hB
I

    

The energies of the quantum mechanical 

rigid rotor are quantized.  

Rotational quantum number 

2 2

, ( , ) , ( , ) , ( , )2 2

1 1ˆ sin
2 sin sin

J m J m J J mH
I

         
    

    
   

    
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• The wave functions for the rigid rotor are the spherical harmonics YJ,m(,ϕ) 

Discrete states for the quantum mechanical rigid rotor 

The rigid rotor wave functions with: 

• l = even are symmetric with respect to inversion around the molecule center 

• l = odd are antisymmetric with respect to inversion about the molecule center 

• Important when applying the Pauli exclusion principle to molecular wave functions 

 
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1, 1

2
2,0

2, 1

2 2
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sin
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5
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15
sin cos
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15
sin
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 

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
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



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







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



Spherical harmonics 


